V&YV and Software Engineering: What
Have We Learned From DARPA’s HPCS
Program

Lawrence Votta

(larry@brincos.com)

Computational Research and Engineering Acquisition
Tools and Environments

CREATE

Computational Research & Engineering for Acquisition Tools & Environments

F-18E/F

S

< $360M 12-year program to develop & deploy 3

Separated Flow

computational engineering tool sets for acquisition Loss of control

engineers

€

< Air Vehicle design tools: Aerodynamics, air frame, |
propulsion, control, early rapid design b ey

. ° C4ISR an_d sensing
1% Shlp design tools: Early-stage design, shock damage antennas in Network

Centric Warfare
and hydrodynamics performance

Battlespace

%+ RF Antenna design tools: RF Antenna performance
and integration with platforms

%+ MG Computational Infrastructure

Sun’s HPCS Productivity Team

Russ Brown — Computational Scientist

Stuart Faulk — Software Engineering, Computer Science
Eugene Loh — Computational Scientist

Declan Murphy — Maintenance, Administration Arch
Susan Squires — Cultural Anthropologist

Walter Tichy — Computer Science, Software Engineer
Michael L. Van De Vanter — Software Tools

Christopher Vick — Software System Architect

Lawrence G. Votta — Computer Arch, Software Engineer
Alan Wood — Fault Tolerance Architect

Robust Productivity Results from

Software Engineering

e Abstraction (Dijkstra & Parnas)
— Separation of Concerns
— Information Hiding, Encapsulation

* Automation
— Programming Languages
— Operating Systems
— Tools
* Size Matters
— Maintenance and Evolution Effort

— Boehm’s Software Engineering Economics
— User community

HPCS Program Phases | - Il

Products
Early Pilot Platforms

HPCS
Capability or I;tetric Framework Early Productivity Productivity |

Products Scope Implementation ~ Framework
Benchmarks Baseline
Application | | | |
Analysis
Performance ‘ A A Research
Assessment Prototypes
Concept /System i
e V\p/) Dbsign PDR COR & P|Io%, gystems
Review
Industry
Eggz?ngss Review Pha|5e [l Reaginess Relview
g 2 N Y N A

A T

(Funded Five)
A Industry Procurements Phase |

. Industry
Critical Program
A Milestones Concept Study

(Fund up to Two)
Phase Il
Full Scale Development

Vision: Focus on the Lost Dimension of HPC
“User & System Efficiency and Productivity”

Parallel Vector
Systems

Tightly Coupled
Parallel Systems

1980’s
Technology
Vector
Moore’s Law
Double Raw
Performance every
Commodity HPCs 18 Months

New Goal:
Double Value Every
18 Months

Industry Accepted Metrics Drive End Products

Industry:

HPCS Phase Il Teams

Pl. ElInozahy Pl. Votta

Mission Partners:

National Nuclear Security Administration

P . : x " \ % 0
5B 2 . . Qe)
. . i s S
Office of Science STATEs O S S e

U.S. Department of Energy

Productivity Team (Lincoln Lead)

13

23] [MIT Lincoln ISl @, L & o
Laboratory (== ’m{'éz“_ _ UCSD
Pl: Kepner Pl: Lucas Pl: Basili Pl: Benson & Snavely PI: Dongarra

MITRE Oak Ripcr: s E=E| CSSMO ConeSouncny
Pl: Koester Pls: Vetter, Lusk, Post, Bailey Pls: Gilbert, Edelman, Ahalt, Mitchell

Motivation

Auto Crash Models

Proctor Gamble Packaging

Weather Modeling and Prediction

Cell Phone Network Layout

Computational Marketing (Costco, Walmart, ...)
Entertainment — Motion Pictures

Swim Suit Design

Tire Design and Optimization

HOME PAGE | TODAY'S PAPER [VIDEO | MOST POPULAR | TIMES TOPICS | Subscribe: Digital /Home Delivery Welcome, Iigwtta Log Qut Help

The New uﬂl‘k Cimes e Ll ING & DIRECT

Asia Pacific =

WORLD U.S. N.Y./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION ARTS STYLE TRAVEL JOBS REALESTATE AUTOS
AFRICA AMERICAS ASIA PACIAC BUROPE MDDLEEAST
>

Advertise on NYTimescom

Japan Held Nuclear Data, Leaving Evacuees in Peril T
" = are sharing on nytimes.com. -

-f | Privacy Polcy | Whats This?

What's Popular Now

Dog Helps 15 ! = Whilethe
Year-Old Rape Markets Swoon
Victim Testify

Extended Car Warranty

Free Quote to Warranty Your Car Including Roadside
Assistance

www.NatlonalVehlcleServiceacom

AdKeeper™
Behold, a Better ntemnet.
www.adkeeper.com

r nce = $15 Month
CGet Super Cheap Car lnsurance for Low lncoms Drivers - $15/
Montht

Ko Sagakl for The New York Times

Contaminated soi at a school in Koriyama, Japan.
By NORIMITSU ONISHI and MARTIN FACKLER

Low-Income-Car-nsurance.com

-] Cars

Published: August 8, 2011

FUKUSHIMA, Japan — The day after a giant tsunami set off the RECOMMEND
continuing disaster at the Fukushima Daiichi nuclear plant, TWITTER
thousands of residents at the nearby town of Namie gathered to COMMENTS (23)
evacuate. ERATL
Given no guidance from Tokyo, town ERUNT
officials led the residents north, st
Multimedia
believing that winter winds would be REPRINTS
blowing south and carrying away any SHARE

Graphic
An Early Forecast of Radiation

Related

Fatal Radiation Level Found at
Japanese Plant (August 2, 2011)

Japanese Find Radioactivity
Their Own (August 1, 2011)

Times Topie: Japan —
Earthquake, Tsunami and
Nuclear Crisis (2011)

Ko Sasaki for The New York Times
PREVENTIVE MEASURES Officials in

radioactive emissions. For three

nights, while hydrogen explosionsat SR RE: NN
four of the reactors spewed radiation
into the air, they stayed in a district
called Tsushima where the children played outside and
some parents used water from a mountain stream to
prepare rice.

EARTH

WATCH TRAILER

The winds, in fact, had been blowing directly toward
Tsushima — and town officials would learn two months
later that a government computer system designed to
predict the spread of radioactive releases had been showing
just that.

But the forecasts were left unpublicized by bureaucrats in
Tokyo, operating in a culture that sought to avoid
responsibility and, above all, criticism. Japan’s political
leaders at first did not know about the system and later
played down the data, apparently fearful of having to
significantly enlarge the evacuation zone — and
acknowledge the accident’s severity.

“From the 12th to the 15th we were in a location with one
of the highest levels of radiation,” said Tamotsu Baba, the

Find the Best Fuel Hfcient Cars. Check out Raview s & Listings-
Today!
wordclasedriving.com

We Buy Salvaged Cars

Sell Your Car Today. Get Cash Fast] Request Free Online Offer
Now .

Copart.com

Advertiss on NYTImescom

TimesLimited E-Mail

. Sign up to receive exclusive products and experiences
i l : featuring NY Times.comi's prermier advertisers.

votta@alum.mit.edu | Sign Up
Change E-mall Address | Privacy Policy

MOSTE-MAILED MOST VIEWED

1. OP-ED COLUMNIST
Credibility, Chutzpah and Debt

Y
3]

. OPINION
‘What Happened to Obama?

3. Virginia Heffernan: Education Needs a
Digital-Age Upgrade

4. By Helping a Girl Testify at a Rape Trial,
a Dog Ignites a Legal Debate

B

ni B 5. On Idyllic Cape Cod, Growing Drug
-‘ R Problem Fuels a Rise in Property Crimes

6. The Phantom Menace of Sleep Deprived
Doctors

7. Overriding a Key Education Law

LIVES RESTORED

Koriyama, Japan, removed surface sol
from lis schools for fear of radiation
contamination and imposed toughar
Inspection standards than those set by
the country's education officials.

mayor of Namie, which is about five miles from the
nuclear plant. He and thousands from Namie now live in
temporary housing in another town, Nihonmatsu. “We are
extremely worried about internal exposure to radiation.”

Readers’ Comments The withholding of information, he said, was akin to

“, »
Share your thoughts. murder.

Post a Comment »

Read All Comments (23) » In interviews and public statements, some current and

former government officials have admitted that Japanese

authorities engaged in a pattern of withholding damaging
information and denying facts of the nuclear disaster — in order, some of them said, to
limit the size of costly and disruptive evacuations in land-scarce Japan and to avoid public
questioning of the politically powerful nuclear industry. As the nuclear plant continues to
release radiation, some of which has slipped into the nation’s food supply, public anger is
growing at what many here see as an official campaign to play down the scope of the
accident and the potential health risks.

Seiki Soramoto, a lawmaker and former nuclear engineer to whom Prime Minister Naoto
Kan turned for advice during the crisis, blamed the government for withholding forecasts
from the computer system, known as the System for Prediction of Environmental
Emergency Dose Information, or Speedi.

“In the end, it was the prime minister’s office that hid the Speedi data,” he said. “Because
they didn’t have the knowledge to know what the data meant, and thus they did not know
what to say to the publie, they thought only of their own safety, and decided it was easier
just not to announce it.”

In an interview, Goshi Hosono, the minister in charge of the nuclear crisis, dismissed
accusations that political considerations had delayed the release of the early Speedi data.
He said that they were not disclosed because they were incomplete and inaccurate, and
that he was presented with the data for the first time only on March 23.

“And on that day, we made them public,” said Mr. Hosono, who was one of the prime
minister’s closest advisers in the early days of the crisis before being named nuclear

8. Learning to Cope With a Mind’s Taunting
Voices

9. Shopper Receipts Join Paperless Age

10, EDITORIAL
Here’s an Easy $100 Billion Cut
Go to Complete List » Show My Recommendations

b =47 E :
Thinking of wine inside the box
Also on NYTimes.com

Summer at camp coufure
The D. B. Cooper" mystery maybe solved

nytimes.com

ADVERTISEMENTS

NYTIMES.COM
HEALTH

It's pretty easy eating greens -
NYTimes.com/Health

Directions and discussions
of everything digital.

Next Generation Computers Offer Unprecedented
Power to Address Important Problems

Next generation computers (2020) will provide Computing Power For The
exciting opportunities to develop and deploy World's Fastest Computers
very powerful application codes:

10"8 FLOPS with 10° cores

— Utilize accurate solution methods

— Include all the effects we know to be important

8-) 1 ”
" Moore’s “Law
10°] Supercomputers\

104

— Model a complete system

— Complete parameter surveys in hours rather than
days to weeks to months

In ~ 10 years, workstations will be as powerful
as today’s supercomputers

100 |

—_—
I

Need to develop codes that exploit this
capability

(GFLOP/s) and cores (=1)

@D /
d)
'l'l
7))
) / i
Y /
I —

® 0.01"
O i
— Multi-Physics codes that can scale from the %0 0001 - Workstation |
present (~ 102 cores) to the future (10° to £ I Performance -
10° cores) L 10 NPT
5 1940 1950 1960 1970 1980 1990 2000 2010 2020
al

Year

Productivity Problem

Today
100 — 1000
Processors

U

Future
10K — 100K
Processors

HPCS Goal:
10X Productivity
Improvement

Scientific and Engineering
Programming

— It’s about the science and engineering

— Scientific and engineering codes are expensive
— Codes live a long time

— Performance really matters

— Hardware platforms change often

— Its all Fortran 77 and C++

— Hardware cost dominate

— Ports are frequent

— V&V expensive

Productivity Problem = Computational
Science Crises?

* Performance Challenge—Designing and building high
performance Computers

* Programming Challenge—Programming for Complex
Computers
— Rapid code development
— Optimize codes for good performance

* Prediction Challenge—Developing predictive codes with
complex scientific models
— Develop codes that have reliable predictive capability
 Verification
* Validation
* Code Project Management and Quality

Productivity Crises = Gridlock

* Symptoms
— Long and troubled software developments
— Dysfunctional market to support tools
— Scientific results based on software
e Scientific programmers
— “... computer scientist don’t address our needs.”

— “... there isn’t enough money.”

* Communication Gap

How to Study Productivity

 Embrace the broadest possible view of
productivity including human tasks, skills,
motivations, organizations and culture.

* Put the investigation on the soundest possible
scientific basis, drawing on both physical and
social science methods.

» Three Stage Research Framework

How to Study Productivity:
Three Stage Research Framework

Explore andl ‘ Test and | ‘Evaluate and
STAGE [Discover Define Validate]

Replicate and

Develop Test and Refine -
Validate
GOALS Hypotheses Models Findings
METHODS Qualitative Qualitative and Quantitative

Quantitative

How to Study Productivity:
Three Stage Research Framework

e Stage 1: Explore and Discover

— Observe phenomena under study and acquire insights
necessary for hypothesis generation.

e Stage 2: Test and Define

— Rigor is added that produce insights, supply concrete
data for model refinement and lead to deeper
understanding.

e Stage 3: Evaluate and Validate

— Quantitative techniques refine the resuls and validate
the outcomes.

Code Project Schedule For Six Large-scale Physics Codes

| Program Milestones Set

Milestones
Program
Planning New Code Projects 18t 2nd 3
And Start Launched 1 l
| 1992 — 1995 1996 | 1997 | 1998 | 1999 _OOQngQ] _____

Egret Code Project

&

Jabiru Code Project

Falcon Code Project ‘

Kite Code Project

¢
¢

Finch Code Project

¢

Gull Code Project

o

o

¢

Project Start @

*Computational Science Demands A New Paradigm, D. E.
Post, L. G. Votta, Physics Today, 2005, 58 (1): P.35-41

4 SOUO1SII\ PaSSIIN || @ SOSS229nS dUO)SI|IN

$9sS999NnS 199l04d

v00C¢ —

[@

pasea)

¥JO0M\ 109l0ud

Staffing levels

Typical Application Lifecycle

Falcon Project Life Cycle

Now \ major product releases
N 1 1 1 I I | | 1 1 1] | |
T (IDIIIIIIIIIIIIIIIIlIIIIIIIIII
3 5|5 Production, 2
L2 2ls product development §’
o 4= 0.=
|8 of'a and user support phase %
€8 55 &| Retirement
oroduct E15 Continued product S| usersupport
N improvement § testing (V&V) and QE, mlmma_l development
Initial and 3] licati b = minimal porting
evelopment | development app 1ca lon Dy Lfsers o | |
0 5 10 15 20 25 30 35
testing by calendar time (years)

customers

Productivity Gridlock = Bottlenecks

Programming Workflow

* Developing correct scientific programs
e Serial optimization and tuning

* Code parallelization and optimization
* Porting

IZ> Manual Programming Effort
IZ> Expertise

The process is complex!

> r—— — Not the WaterFall Model!
Computational Component Analysis
Science — .
Workflow Resuls \
runs
" @ 1. Requirepaents
input
Schedule
l Runs

Identify
algorithms
Setup
Problems
Production Analyze Decide;
Runs Results Hypothesize
A
Make
Complete Decisions
Run
A Document
Analyze Decisions
’ Run
Identify Identify
Next Run Uncertainties

Upgrade existing code or
develop new code

Set global
Requirements

2.
3.
4,

Select

Programming
Model

Formulate

question
Identify

Customers

Define
General
Approach

Verification
Tests

Regression
Tests

Computing
environment

Validation
Expts.

Validation
Tests

Stage Workflow Skill Set
Understand Science
Problem Statement Programming
Consult aonsult
References Peers

2 g

Formu_late Gonsult Consult Science
Solution

References Peers

Vv

Prototype/ Science

Experiment = Programming
Write
Sample Code
Analyze
Results
Code Optimizing/
Tuning
Evaluate Science
Overall Assess Programming
Approach Results
Code For HPC Optimizing/
Parallelizing

[Build J Debug’J
Tune

Productivity Bottleneck
Expertise Gap

* Four Distinct Skill Sets
— Domain Science
— Scientific Computing
— Scaling
— Management
* The skills are only useful when they are

synchronized through communication and
collaboration or exist in one person.

— 2 skill sets rare; 3 skill very rare; 4 ...

Where Are the Tools?
Abstraction & Automation - Gaps

Scientist Tool Complaints
* “hard to learn”

e “don’t scale”

e “differ across platforms”
* “poorly supported”

* “too expensive”

Where Are the Tools?
Abstraction & Automation - Gaps

Contributing Factors

* General computing Integration Developing
Environments’ have different assumptions.

e Lifetime of codes slows evolution of tools,
necessitating long life cycles.

* Field is small and specialized.
 |Investment in tools is insufficient.

* Business demands may remove important tools
from the market.

Is It Nature or Is It Software?

* Trust in the validity of computational
outcomes a key productivity issue.

e How do scientist build confidence in their
codes?

— “... looked right”

— “... 4 or 5 years to get some confidence in code.”

* Scientist manage threats to validity in
experimental designhs but not in codes.
— Worked needed here.

Breaking the Gridlock —
Can Software Engineering Help?

* Software Engineering
— Automation
— Abstraction
— Measurement

e Scientific Programming
— |lnvestment

— Modernization

Promising Experiments 1 —
Breaking the Myths

 Computational Science Myth
— Can not achieve performance using high level language.

— Our experiments with NAS benchmarks, GTC
(computational CFD of heat loss in tomacks) and Amber
(electrostatic potential of complex proteins) show that 10X
(less code) productivity at same performance.

 Computer Science Myth

— Implement serial version then parallelize for multicore and
clusters.

— Experiments with programming teams indicate this is the
wrong strategy — suboptimal solutions achieved.

Promising Experiments 2 —
Breaking the Computational Myths

* NAS Parallel Benchmarks — port F77 versions to
Fortran 90

— Removed specialized code for distributed memory
— Removed source level optimizations

— Exploited abstractions provided by Fortran 90 a
superset of F77.

— Remove code not portable.
* Result —reduced source code by ~10x
— Maintenance — lifetime cost scale with size

— Portability — removed code not portable
— Correctness — see next slide.

Perfective Code Maintenance

Remove specialized code for distributed
memory

Remove source level optimizations

— e.g., Loop unrolling, intermediate values
Exploit abstractions supported by Fortran 90
Seek specification-code alignment

Remove code known not to be portable

Promising Experiments —
Breaking the Computational Myths

call resid(u,v,r,nl,n2,n3,a,k)
callnoerm2u3(r,nl,n2,n3,rnm2,rnmu,nx(1lt),ny(lt),nz(1lt))

0ld2 = rnm2
oldu = rnmu
doe it=1l,nit

call mg3P(u,v,r,a,c,nl,n2,n3, k)
call resid(u,v,r,nl,n2,n3,a,k)
endde
call nerm2u3(r,nl,n2,n3,rnm2,rnmu,nx(1lt),ny(lt),nz(lt))

(a) Original FORTRAN 77

Each of the four iterations consists of the following two steps,
r=v-Au (evaluate residual)
u=u+ MK r (apply correction)

Start the clock before evaluating the residual for the firsttime, ...
Stop the clock after evaluating the norm of the final residual.

(b) Specification

do iter = 1, niter
r = v A(u) ! evaluate residual
u =u + M(r) ! apply correction
enddo
r =v - A(u) ! evaluate residual
L2norm = sgqrt(sum(r*r)/size(r))

(¢) Revised Fortran 90

Figure 2. "High Productivity" code excerpt from NAS MG (timed portion)

Code Comparisons

Code Experiment Results:

Code Name Lines of Code Performance
(SLOC) Slow Down
Before After Reduction

NPB CG 839 81 10x 1x

NPB MG 1,701 150 11x 2X-6X

NPB BT 4,234 594 7X 2.7%
GTC 6,736 1,889 3.6X 2.7%
sPPM 13,606 1,358 10x 2X

A More Realistic Experiment:
GTC Plasma Physics Code

“At first glance, | was impressed by how small and compact
the code had become. | always thought that GTC was as
small as it could get, but | was obviously wrong. | was also
pleasantly surprised to discover that the programming
language was still standard Fortran 90/95, and not a totally
new language.”

“The new code is clear, concise, and easy to read.”

“The fact that all the MPI calls and OpenMP directives have
been removed makes the physics represented in the code
easier to follow.”

“[Expect a] performance hit unless the compiler can
perform very good interprocedural optimization and/or
automatic inlining.”

Computational Science And Engineering Has At
Least Four Major Elements.

Computers Codes V&V Users
Making enormous More Harder due to Use tools to
progress but at complicated inclusion of | solve problems, 3
cost of models + more effects do designs, S
complexity, larger and more make > o
particularly programming | complicated discoveries v
memory hierarchy | challenges models
Need to reduce Greatest Inadequate Users make
programming bottleneck | methods, need | connections to
challenge paradigm shift customers

e We need to develop a total capability to solve problems, not
just build codes or computers.

Issues Summarized In January 2005

Physics Today Article

Three Challenges
— Performance Challenge
— Programming Challenge
— Prediction Challenge
* Where case studies are important
Case Studies are needed for success
— The Scientific Method

Paradigm shift needed

— Computational Science moving from few
effect codes developed by small teams to
many effect codes developed by large teams

— Similar to transition made by experimental
science in 1930—1960

— Software Project Management and V&V
need more emphasis

*Computational Science Demands a New Paradigm, D.E. Post
and L.G. Votta, Physics Today,58(1), 2005, p.35-41.

Email post@ieee.org to get a copy.

Computational Science Demands

a New Paradigm

The field has reached a threshold at which better organization
becomes crucial. New methods of verifying and validating
complex codes are mandatory if computational science is to

fulfill its promise for science and society.

Douglass E. Post and Lawrence G. Votta

C| mputers have become i
arch. Tln. sen
experime ata, and the
and papi
rists extend their
logica

wsable to scientific re
lecting and analyzing

3 pencil
et theo
cal, chemical, and bi

mological st

Beyond such well
penmenter
now launchi

1

«d aids to theori

the exponential gr
r the new fiel

s of hl.hly com
s have been cre
delity, phln:-mv:‘m
s 1 mtl . inertial

problems.
unp n-uodvnu-d

wsphere (figure 4)
m has the potential tc
a third powerful re
how, the
nt and
at much ¢
ture. We point out three
tion
its potential and take its
theory and experiment:
ance challenge—producing high-perform

Computa
theory and experiment as
methodale

ear th

it is als th\ oming all t
lingly
hat com

challenge—programming for complex

developing truly predictive
enge requires that the expo
nputer performance continue, yvield
and faster proc ng. The pro
25 the writing of codes that can

nential growth
ing ever lar
gramming chi

€«

memorie

Douglass Post Is a computational physicist at Los Alamas Na-
tonal Laboratory and an assoclate editor-in chief of Computing
n Scsanca and Engineeving. Lawrence Votta is a Distinguished
Engnear at Sun Microsystams Inc In Manlo Park. Calilornia. He
has been an associate actor of IEEE Transachions on Software
Enginesnng.

0 2008 Amarcan it of Plryscs, $-0051

= SIS TOORY

efficiently x-\pln

p'clnl on Lh |I1x ng
computing power t
relinble enough t

challenge is
for the next 10
»d continues to in
enting that
ngly complex computer
with thou

being met,
years. Proce
parallelizat

amming
ing to de
tate program

velop language

ming for ma parallel com puhl

The most urgent challenge
The prediction challen,

ed " effects
cales. The
v of the m

spa .
pre: dunun challenge is
e problem of
often results in
reliable and credible to be the be

wer

teams.

ymplexity. and

mblance to the
scale by experimental

1d War IL

f six larg

code project

vielded three import

found, are all crucial to the
» code-writing project. Although
cts——the rated by
all three re
projects g
f any one of those re

mputational
1-4, for example
her current and planne
ficient atten . In the ab
mne doesn't h
ment, confirmation,

they ofte

's hard to decide
Our experien
review pre
provide
‘hmr. Many thing
wrong with a ©

s improperly.
lution might be inappropriately

January 2005 Physks Today 35

World Year of Physics

Concluding Remarks

Computational Science and Engineering are
here to stay.
Do not succumb to myths!

— Computer Science and Software Engineering is
improving

— Serial to parallel model
Productivity crises is an expertise crises.

V&V&UQ (and Certification) credibility is
Important.

BACKUPS

Bibliography - 1

D. F. Kelly, “A Software Chasm: Software Engineering and Scientific
Computing.” IEEE Software. 24, 6 (Nov. 2007), 120-1189.

J. Carver, R. Kendall, S. Squires, and D. Post, “Software Development
Environments for Scientific and Engineering Software: A Series of Case
Studies.” In Proceedings of the 29th international Conference on
Software Engineering (May 20 - 26, 2007). International Conference on
Software Engineering. IEEE Computer Society, Washington, DC, 550-559

S. Squires, M. Van De Vanter, and L. Votta, “Yes, There Is an ‘Expertise
Gap’ In HPC Applications Development”, Proceedings of the Third
Workshop on Productivity and Performance in High-End Computing
(PPHEC’06), Austin, TX, Feb. 12, 2006.

M. Van De Vanter, D. Post and M. Zosel, “HPC Needs a Tool Strategy”,
Second International Workshop on SE HPC Systems Applications, May
2005.

D. Post and L. Votta, “Computational Science Demands a New Paradigm”,
Physics Today, 58(1), pp. 35-41, 2005).

Bibliography — 2

E. Loh, M. Van De Vanter and L. Votta. Can Software Engineering Solve
the HPCS Problem? Second International Workshop on SE HPC Sys
Applications, May 2005.

S. Squires, M. Van De Vanter, and L. Votta, “Software Productivity
Research In High Performance Computing,” Cyberinfrastructure
Technology Watch (CTWatch) Quarterly: High Productivity Computing
Systems and the Path Towards Usable Petascale Computing, 2(4a),
November 2006, pp. 52-61.
http://www.ctwatch.org/quarterly/archives/november-2006-a/

C. Holland, DoD Research and Development Agenda for High Productivity
Computing Systems (White Paper), Pentagon, Washington, DC, June
2001.

Goldberg, D. 1991. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys 23, 1 (Mar. 1991),
5-48.

10. See Tichy, et al at <http://www.ipd.uni-karlsruhe.de/ multicore/research/

download/Pankratius-bzip-multicore.pdf>

Bibliography - 3

11. S. Faulk, S. Squires, M. Van De Vanter, C. Vick, L. Votta and A. Wood,

12.

“Productive Petascale Computing: Requirements, Hardware, and
Software”. Sun Microsystems Technical Report-2009-183.

See E. Loh, “The Ideal Programming Language” at
http://queue.acm.org/detail.cfm?id=1820518, 2010.

Productivity

» P = Utility/Cost

* Conceptually a great idea — value per unit cost
increases => per capita wealth increases
— Renormalized
— Inflation

— Definition of value

 What does it mean for computational science?

ASCI

* Inlate 1996, the DOE launched the Accelerated Strategic Computing Initiative
(ASCI) to develop the“enhanced” predictive capability by 2004 at LANL, LLNL
and SNL that was required to certify the US nuclear stockpile without testing

— ASCI codes were to have much better physics, better resolution and better
materials data

— Need a 10° increase in computer power from 1995 level

— Develop massively parallel platforms (20 TFlops at LANL this year, 100 TFlops at
LLNL in 2005-2006)

— ASCl included development of applications, development and analysis tools,

massively parallel platforms, operating and networking systems and physics
models

* ~ 56 B expended so far

* First milestones were Jan.1,2000 and Jan.1,2001—3 to 4 years after project
start!!!

* Success required development and integration of several major physics
capabilities

" Lawrence Livermore

ASCI Milestone and Code Project History

| 1992 |

Milestones set

ASCI New Code First Second Third
p|anning Projects Milestone Milestone Milestone
and start ||[_taunched l l l

1993,1994,1995 | | 1996 | 1997 | 1998 I 1999 i 2000 i 2001 i

Egret Code Project

A\ 4
\ 4

Jabiru Code Project

|| $9SS9I2INS 9UO0}S3|IN ||

LY . . .
- e s s E s+ s o s o*ow
LY . .

Awk Code Project

Kite Code Project

\ 4
A 4

Finch Code Project

Gull Code Project

. .

|| sainjiej auo}sallN ||

Egret Code Project was conservative—schedule and
technology—and successful

Originally started in 1992 as part of a graduate thesis building on a
prior code

— Serial version working with all but one of the major required packages in
1994, parallelization began in 1997

Written in C by a very experienced team of physicists and computer
scientists

— Management experienced with code development
Early customer involvement (~1995), fairly continuous V&V since 1996
Began implementation of next major package in 1997
Strong support by management, well-defined project structure

Completed first major milestone Dec 28, 1999, three days before Jan.
1, 2000 milestone due date

Jabiru code project was conservative
and successful

Jabiru code project began as a code port from a vendor with all but
one of necessary packages (serial) in 1992

— Installation of other packages begun in 1997

— Parallelization started in 1994
Written in Fortran 90

— Heavy emphasis on portability, (~ 10 different platforms)

— Conservative, perhaps overly conservative computer science
Continuous interaction and use by users, long V&V history
Substantial use by non-ASCI projects (Labs, universities, and other
institutions)

Senior management support polarized, some strongly in favor—"it
really works”, some strongly opposed (“not invented here syndrome”)

Strong example of a “hero” model success, highly experienced and
mature staff

Awk Code Project was a very ambitious
project

The Awk Code Project Vision involved using object oriented languages(C++)
with a Python controller

Project began in late 1996

Very few experienced staff, all very bright but fairly new to the physics and the
programming challenge

— Leadership very young and inexperienced, but smart and dedicated
— Lots of computer science and programming support

— Senior management very inexperienced managing code development
Ambitious physics scope, trying new algorithms that needed considerable R&D

Initially didn’t succeed in meeting milestones—initial milestone not important
for customers—customers weren’t interested

Still not a really mature code after 7 years
Performance a major issue (10 times slower than comparable F90 codes)

Kite Code Project has had mixed
SUCCEeSsSes

Kite Code Project used Fortran, but with home grown object
programming implementation

Project launched in mid-1996

Fairly innovative physics approach

Little programming/computer science support

Good support from users

Mixture of experience levels and code development skills
— Leadership inexperienced with large code groups
— Senior management inexperienced with successful code development
— Algorithm support groups failed to deliver essential modules

Major changes in the milestone requirements were made by DOE six
months before milestone was due that invalidated the strategy of the
team to complete the milepost

Didn’t complete milestone on time Dec. 31, 1999

Finch Code Project was a shotgun marriage that
ended in divorce

* Finch Code Project began in early 1997
* Initial project consisted of two major groups in other divisions with existing
codes that had lost their support plus an integration group
— These groups viewed ASCI as a way to get support for their existing work

— Success was measured by the success of each sub-project individual rather than
the success of the whole project

— The senior management in the other divisions was much more interested in the
continued flow of the money than in the success of the Finch project

— Little or no analysis was done to establish that the two packages were compatible,
i.e. that it was technically feasible to integrate the two packages into a single code

— Finch Project manager had almost no authority over the staff in each sub-project
 The Finch Project never really got off the ground.

— It didn’t meet any of its milestones

— But it had the best SQA of all of the codes!

 The Finch Project was canceled last year.

Gull Code Project was canceled after ~
S100M

The Gull Code Project was begun in 1992
It was based on a F90 parallel code obtained from another laboratory
The Gull project staff decided to use the project as a vehicle for improving
code development methodologies

— Automatic and general parallelization through a library

— Latest object oriented computer languages (C++)

— Automatic differencing and code generation from “equations”

— Performance issues: Substantially outperformed by legacy code that it was based
on (which only had about 1 FTE of support per year)

Very large code team (~ 50 staff) spread across 3 divisions without much
authority given to project lead

— Project leaders were often inexperienced and there was substantial project
leadership and staff turnover

Hostility toward customers (“We know what you need better than you do!”)

Failed to meet ultimate milestones (although a few intermediate ones were
met)

Canceled last year after S100M (about expending about one-half of the
weapons code development resources at one of the labs)

We have used these results to identify
some “Lessons Learned”

The Successful projects emphasized:
* Building on successful code development history and prototypes
* Highly competent and motivated people in a good team
* Risk identification, management and mitigation
e Software Project Management: Run the code project like a project
* Determine the Schedule and resources from the requirements
* Customer focus
— For code teams and for stakeholder support

e Better physics and computational mathematics is much more important than better
“computer science”

* The use of modern but proven Computer Science techniques,
— They don’t make the code project a Computer Science research project

* Develop the team

* Software Quality Engineering: Best Practices rather than Processes
e Validation and Verification

The unsuccessful projects didn’t emphasize these!

The Lessons Learned are simple.

Build on successful code development history and prototypes
— Start with successes and evolve from them
— LANL and LLNL had a record of small team successes
* Moved quickly to large teams wth the result that there was a lot of stumbling and turmoil
Highly competent and motivated people in a good team
— It’s all about building and supporting a good team.
— Finch and Gull Code Projects didn’t have cohesive teams, the Egret and Jabiru projects did

Risk identification, management and mitigation

— LANL and some of LLNL management blamed the code teams for failures due to poor
planning, inadequate support and other things beyond the control of the team

— Most failures are due to lack of management support and constructive oversight
— Finch code project risks were not analyzed and dealt with

Software Project Management: Run the code project like a project
— If the code project leaders are to be accountable, they need authority

— The Gull and Finch project leaders didn’t have the authority they needed to run their
projects, the Egret and Jabiru project leaders did

— Give authority to those responsible for the project

— Aresearch program is not a project! Proper balance between R&D and structured
development is essential

